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Abstract Identification of allelic variants associated with

complex traits provides molecular genetic information

associated with variability upon which both artificial and

natural selections are based. Family-based association

mapping (FBAM) takes advantage of linkage disequilib-

rium among segregating progeny within crosses and among

parents to provide greater power than association mapping

and greater resolution than linkage mapping. Herein, we

discuss the potential adaption of human family-based

association tests and quantitative transmission disequilib-

rium tests for use in crop species. The rapid technological

advancement of next generation sequencing will enable

sequencing of all parents in a planned crossing design, with

subsequent imputation of genotypes for all segregating

progeny. These technical advancements are easily adapted

to mating designs routinely used by plant breeders. Thus,

FBAM has the potential to be widely adopted for discov-

ering alleles, common and rare, underlying complex traits

in crop species.

Introduction

The purposes of identifying allelic variants associated with

complex traits are to understand the molecular mechanisms

of complex traits and provide diagnostic and selectable

markers for favorable alleles in genetic improvement.

Three forward genetics approaches have been proposed to

serve this purpose: linkage mapping (also called QTL

mapping), association mapping (AM) and family-based

association mapping (FBAM). Linkage mapping uses a

single family (Lander and Bostein 1989) or several families

(Xu 1998; Blanc et al. 2006) of segregating progeny from

cross(es) between inbred lines, but is constrained by a

limited number of recombination events created in pro-

duction of segregating progeny, resulting in high power but

low resolution (Darvasi et al. 1993). Association mapping

uses unrelated individuals which have accumulated his-

torical recombination events for a large number of gener-

ations, thus improving the resolution of causal variants

(Anderson and Georges 2004; Yu et al. 2006). However,

large samples (thousands or more) are required to provide

sufficient power to identify less frequent alleles with sig-

nificant impact on the trait of interest (Hirschhorn and Daly

2005; Kingsmore et al. 2008).

The use of several families in linkage mapping is akin to

FBAM in that multiple families of segregating progeny are

obtained from matings among lines. However, there are

distinctions. In FBAM it is assumed that parental lines are

related through identity by descent (IBD) and linkage

disequilibrium (LD) of alleles (historic recombination

events) in parental lines is exploited to provide greater

resolution for identifying the variants associated with

complex traits (Fig. 1), whereas in multiple family linkage

mapping, parental lines in independent families (Xu 1998)

or connected families (Blanc et al. 2006) are assumed to be
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unrelated and alternative alleles are modeled as members

of distinct haplotypes in these parental lines, resulting in an

assumption of no LD of alleles among parental lines and

therefore a lower resolution of QTL detection. Often

multiple family linkage mapping is conducted with sparse

genotyping technologies (Li et al. 2005; Guo et al. 2006;

Buckler et al. 2009) whereas FBAM requires technologies

capable of providing greater densities of marker loci (Yu

et al. 2008; Guo et al. 2010; Tian et al. 2011; Kump et al.

2011). There is no clear definition to distinguish sparse and

dense genotyping, but successful identification of QTLs in

FBAM is possible only when genotyped loci are in linkage

disequilibrium (LD) with causal variants. And LD decay

varies among crops and populations within crops (Buckler

and Gore 2007). In human genetic research, FBAM is less

attractive than AM due to costly recruitment of consenting

family members (Laird and Lange 2006) and it may have a

limited power for detecting QTLs because of small num-

bers of progeny per family. Plant and experimental animal

species (Churchill et al. 2004), however, exhibit qualities

that favor application of FBAM. For example, parental

lines could be fully inbred lines and large segregating

families are relatively easy to develop with designed

matings. Because plant breeders of most crop species

typically mate a few elite inbred lines or varieties with a

wide range of new inbred lines or varieties to generate a

large number of segregating populations (Jansen et al.

2003), FBAM may be applied to established breeding

populations in breeding programs.

Two approaches are used to exploit LD of alleles among

parental lines in FBAM. One is to test marker loci which

are genotyped in a FBAM population or genotyped in

parental lines and imputed onto members of a FABM

population (see below). In this approach, markers adjacent

to or within a QTL gene may show a genetic effect of a

QTL since it resides on or is in complete LD with the

causal variant of the QTL or a reduced genetic effect due to

its incomplete LD with the causal variant of the QTL in

parental lines. Association of markers with a trait may be

significantly detected even if it is in incomplete LD with

causal variant of a QTL in parental lines as long as an

appropriately large FBAM population size is used. The

other one is to test a series of unobservable loci along a

chromosome or a target region in which IBD probabilities

of a QTL allele among parental lines at the locus being

tested are first estimated based on the marker haplotype

similarities of parental lines and subsequently combined

with IBD probabilities of a QTL allele estimated using its

flanking markers within known pedigrees (George et al.

2000; Meuwissen et al. 2002; Farnir et al. 2002; Lund et al.

2003; Lee and Werf 2004). The former approach generally

requires a higher density of genotyping than the latter, and

both approaches need a higher marker density than

multiple family linkage mapping. In this review, we only

focus on the first approach since emergence of next gen-

eration sequencing technologies enables genotyping by

sequencing (GBS) and identification of most potential

allelic variants for parental lines.

Nested association mapping (NAM) populations, in

which a set of diverse lines is crossed with a common

reference line, have been set up for several plant species

including maize (Yu et al. 2008), Arabidopsis (Buckler and

Gore 2007), barley (R. Wise, personal communication),

sorghum (J. Yu, personal communication), and soybean (B.

Diers, personal communication). These NAM populations

have been referred to as next generation mapping popula-

tions (Morrell et al. 2012). We propose that NAM repre-

sents a logical step toward FBAM which will provide a

cost-effective approach to discover a wide spectrum of

alleles, common or rare, underlying complex traits in plant

species.

Creation of a FBAM population

Mating designs

In contrast to human species, a FBAM population con-

sisting of multiple families may be developed in plant

species by designed matings involving fully inbred lines.

The power of QTL detection will depend upon the total

number of segregating progeny sampled from informative

families (Allison et al. 1999). Generally, variants which

have high minor allele frequencies (close to 0.5) will

segregate in about half of the families, whereas variants of

low minor allele frequencies will be found in either very

few or a large number of informative families (Guo et al.

2010). Therefore, an important goal of FBAM mating

designs is to assure that variants of low minor allele fre-

quencies are included in a reasonable number of informa-

tive families. One well-known design for producing a

FBAM population is single reference mating design, i.e.,

the NAM design (Yu et al. 2008). In this design, a diverse

set of parental lines is selected based on molecular diver-

sity analysis, and each of the lines is crossed with a com-

mon reference line. A second design is the multiple

references mating design (NCD-1) proposed by Guo et al.

(2010). In this design, a set of diverse parental lines is

divided into several groups and then crossed with one of

several reference lines. Compared with the NAM design,

NCD-1 enables more variants to be evaluated in a rea-

sonable number of informative families. A third choice

could be to develop families from matings between lines of

contrasting phenotypes. This design is based on the

assumption that alleles underlying the specific trait may be

enriched for alternative alleles in the extreme phenotypes.
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This design combined with the extreme trait sequencing

may maximize power for detecting the less frequent alleles

underlying complex traits.

Types of progeny

Theoretically, any type of segregating progeny can be used

for identifying QTLs using FBAM (Guo et al. 2010).

However, RILs and DHs are genetically reproducible,

easily stored and can be used for precise phenotyping

multiple traits at multiple locations and years.

FBAM not only captures historic recombination events

in parental lines but also produces a new set of recombi-

nants in the FBAM population. Such recombinants help to

eliminate spurious long range LD on a chromosome (Guo

et al. 2010) while LD within short segments of

chromosomes formed by historic recombination events will

be maintained. Because RILs produced by selfing accu-

mulate twice as many recombinant events as DH and F2,

RILs are more desirable to reduce LD over large segments

of chromosomes and improve resolutions of QTLs.

Sample sizes of parental lines and progeny

Segregating QTLs in a FBAM population are determined

by parental lines and therefore an appropriate number of

diverse parental lines should be included so that all or most

of the variants underlying a complex trait could be included

in a FBAM population. The power of detection of a QTL

depends upon the number of informative families and the

number of segregating progeny sampled from them. Guo

et al. (2010) indicated that more than 5 informative

DHs 
Marker Causal Non-causal          Allele

site            sites               effect  
M1M3    C T        G                +10
M1M3 
m1m3    A A T                 -10
m1m3

DHs
Marker Causal Non-causal          Allele

site       sites                 effect  
M2M4    C   T        T +10
M2M4 
m2m4    A A G          -10
m2m4

Causal  Av erage  Non-causal  Av erage     non-causal      av erage
C +10             T                +10               T                     0
A -10              A              -10                G                    0 

Step 1: Separate analysis of 
individual families 
(populations)

Step 2: Av erage      of allele effect

M1   CTG          M3

m1      A AT         m3

M2      C TT    M4

m2     A AG    m4F1 F1

Red SNP =causal site, black SNP=non-causal site, extremely close

Fig. 1 Family-based association mapping (FBAM) exploits linkage

disequilibrium in parental lines to identify the variants associated with

a complex trait. For illustration, assume two families consisting of

double haplotype (DH) progeny from crosses between fully inbred

lines. Also assume that three single nucleotide polymorphism (SNP)

loci (C/A, T/A, T/G) are in close proximity on one chromosome.

Further assume that the C/A locus (red highlighted) is a functional

locus underlying the complex trait, with genetic effects of C and T

alleles being ?10 and -10 separately. T/A and G/T loci are assumed

to be non-causal SNPs. The former one is in complete linkage

disequilibrium (LD) but the latter one in linkage equilibrium (LE)

with the causal SNP. These three loci are assumed to be flanked by

two close polymorphic markers M1/m1 and M3/m3 in the first family

and by M2/m2 and M4/m4 in the second family. Recombination

events among the SNP loci and double-cross over events between two

flanking markers are not expected to occur due to the above

assumptions when the DH progeny are produced. Individuals with

recombinants between two flanking markers are not considered here

for convenient illustration. Conceptually, FBAM can be decomposed

into two steps: (1) analysis of individual families to estimate the

genetic effects of marker loci, and (2) average of estimated genetic

effects across families for each marker locus. For illustration,

consider environmental and experimental errors are zero. The T/A

locus, which is in complete LD with the causal C/A, has the same

average genetic effect of ?10/-10 as the causal C/A and therefore

both loci are indistinguishable. The T/G locus, which is in equilibrium

with the causal C/A, has an average genetic effect of 0 and it is

distinguished from the causal C/A. Partial linkage disequilibrium and

other sources of variability will add complexity and a one-step

sophisticated statistical analysis is required to detect the variants

underlying complex traits in FBAM. In multiple family linkage

mapping, genotypes of the three SNP loci are unknown and these

three loci are not distinguishable, resulting in a reduced resolution
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families with 100 lines per family (a total of more than 500

informative individuals) will produce reasonable power for

detection of a QTL with genetic effects responsible for at

least 5 % of the phenotypic variability. In practice, how-

ever, the causal variants underlying a complex trait is

unknown prior to development of an experimental FBAM

population. One feasible strategy is to enable as many

SNPs as possible to have an appropriate number of infor-

mative individuals through balancing family sizes and

number of families if the SNP genotypes of parental lines

are available.

Genotyping and imputing of genotypes in a FBAM

population

In early human FBAM studies, a FBAM population and

their parental lines are assumed to be genotyped using the

same set of high density molecular markers. Recently,

Burdick et al. (2006) developed in silico genotyping

method for imputing high density genotypes of progeny

based on densely genotyped parental lines and sparsely

genotyped progeny. Yu et al. (2008) developed a similar

strategy for the maize NAM population.

The method developed by Burdick et al. (2006) is

applicable for plant species but construction of haplotype

phases is not necessary when inbred lines are used as

parents. Genotypes of parental lines are directly copied

onto their corresponding offspring using flanking markers

for their defined genomic segments where no recombina-

tion events occur. Missing data are imputed for the interval

where a recombination event occurs. The method used by

Yu et al. (2008) is similar when no recombination events

occur in the segment defined by flanking markers, but for

the segment where a recombination event occurs, a

recombination event is simulated and then the corre-

sponding parental genotypes are imputed.

Guo and Beavis (2011) developed an expectation

imputation method using Haley and Knott’s concept (Ha-

ley and Knott 1992). First, linkage map positions of

unmapped SNPs were interpolated using genomic physical

map and known linkage map and then expected values are

computed and imputed using a series of linked markers

which are genotyped in parental lines and their progeny.

This method is applicable for any set of progeny from self-

pollinations of a mating between two inbred lines. It has

been successfully applied to impute 0.5 million SNP

genotypes of 26 parental lines onto the maize NAM pop-

ulation of 5,000 RILs using 1,000 markers (http://www.

agron.iastate.edu/GFSPopGen/resources.html). Approxi-

mately 70 % of data points had absolute genetic scores of

0.9–1.0 which are close to true genetic score with absolute

value of 1. Five percent of data points had expected scores

with absolute values below 0.9 due to missing data of 1,000

markers in RIL progeny. About 25 % of data points were

missing due to failure of genotyping in parental lines.

Recently, DHF1 (F1 derived double haplotype) and DHF2

(F2 derived double haplotype) have become common in

maize (Bernardo 2009). This technique can be naturally

applied to generate FBAM and NAM populations. Impu-

tation of genotypes can be similarly obtained by use of

conditional distributions described by Snape (1988) for

DHF1 and in Appendix for DHF2, respectively.

Tian et al. (2011) developed a method which computes

and imputes the weighted values of parental lines using

physical distance instead of genetic distance of markers to

be imputed relative to flanking markers. One obvious

drawback of this method is that the same genotype scores

are imputed for DHF1 and RILs although RILs have almost

twice as many recombination events as DHF1 for a given

genomic segment.

Data analysis methods

Family strata of a FBAM population

Family strata cause differences of phenotypic means of

families which may cause false positive associations and

unbiased estimates of genetic effects in FBAM (Abecasis

et al. 2000). In analysis of data from human families,

family strata are defined as diverged subpopulations from

which different families are drawn. In crop species, family

strata may be produced by matings between heterogeneous

pairs of inbred lines. Family strata may exist if crosses are

made separately within diverged groups of inbred lines or

if a NAM mating design is used to produce a FBAM

population because the set of parental lines crossed with a

common reference line is usually from diverse origins.

Similarly, family strata may exist if a FBAM population is

produced using a NCD-1 mating design. Strata may not

exist if each of the matings is made between inbred lines

from the same homogenous group of inbred lines or

between two distinct homogenous groups of inbred lines.

In addition, strata-like differences may appear among

families if the progeny from the same families are evalu-

ated in the same environments while progeny from dif-

ferent families are evaluated in distinct environments.

Two methods are used to control family strata in data

analysis. One is to include family mean effects as fixed (Yu

et al. 2008; Guo et al. 2010) or random (Abecasis et al.

2000) in the models. The second method is to decompose

the genetic score of an offspring into the expected genetic

score given parental lines and a deviation from the

expected score. The latter is used in human quantitative

transmission disequilibrium tests (QTDT) (Abecasis et al.
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2000) and family-based association tests (FBAT) (Laird

and Lange 2006). Note that both methods are used in

QTDT.

Another issue in FBAM data analyses is segregation of

background QTLs. There are two methods for controlling

background QTLs. One is to use pedigree information

(Abecasis et al. 2000). The other one is to use multi-locus

model in which QTL-linked molecular markers are inclu-

ded as cofactors in the models (Yu et al. 2008; Valdar et al.

2009; Guo et al. 2010). A combination of both, i.e. inclu-

sion of QTL-linked markers as cofactors to control major

effect QTLs and use of pedigree information to control a

large number of small effect QTLs, may be the best

approach, although further researches are needed to eval-

uate this idea.

Family-based association tests (FBAT)

Laird and his group (Laird and Lange 2006) developed

FBAT for human FBAM. FBAT is non-parametric and its

validity does not require specification of the distributions

underlying complex traits. The assumption of Mendelian

inheritance ensures valid results of test statistics. It is

applicable for any trait including discrete and selected traits

but is more suitable for a FBAM population with a small

number of progeny per family and a large number of

families (Laird and Lange 2006).

The general FBAT statistic is defined as:

U¼
X

i

Ui; where Ui¼
X

j

TijðXij�EðXijjPiÞÞ

Var(UÞ¼
X

Var(UiÞ; where Var(UiÞ¼EðU2
i Þ� ½EðUiÞ�2

ZFBAT¼U=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var(UÞ

p
or v2

FBAT¼U2=Var(UÞ

where i indexes a pedigree, j indexes the progeny in the ith

pedigree. A pedigree is defined as a nuclear family con-

sisting of progeny from a cross between two parental lines,

as described in Table 1, or a set of families in which a

progeny line from one family is a parent of another family,

as described in Table 2. Xij is the genetic score of progeny

line j within family i. In an additive model, Xij is defined as

the number of copies of a particular allele. In a recessive

model, Xij = 1 if the progeny line is A1A1 and 0 otherwise.

In a dominant model, Xij = 1 if the progeny line has any

number of A1 alleles and 0 otherwise. E(Xij | Pi) is the

expected value of Xij given parental genotypes.

Tij = Yij - l, where Yij is the phenotypic value of progeny

line j within family i and l is user-defined. Several choices

are available for l: (a) sample mean, (b) the value that

minimizes Var(U), or (c) Tij = Yij - b0 - bZij, where Zij

are covariates. Given a sufficiently large sample (at least 10

informative families), ZFBAT is distributed as N(0,1) and

vFBAT
2 as v1

2.

Computation of Var(U) depends upon the distribution of

marker genotypes among offspring under the null hypoth-

esis, in which the marker being tested is assumed to be

unrelated to the trait and it assumes Mendelian inheritance

(Rabinowitz and Laird 2000; Horvath et al. 2004). An

algorithm and software have been developed for human

samples, but not plant species (http://www.biostat.harvard.

edu/fbat). In plant species, the parental lines and their

offspring are inbred lines in most cases and parental

genotypes are usually available. Tables 1 and 2 illustrate

an algorithm to derive the null distributions of marker

genotypes among offspring in plant species using a

hypothesized nuclear family and a hypothesized pedigree

of inbred offspring, respectively. The pedigree described in

Table 2 is used to illustrate how to calculate Var(Ui) of a

pedigree. The computation of a nuclear family is similar.

The observed genotypes of founder parental lines A, B and

C and offspring lines O1 and O2 in Table 2 are assumed to

be separately AA, BB, BB, AA and BB at the locus being

tested, with the assumed phenotypic values of offspring

lines O1 and O2 being 11 and 14, respectively. Further

assume that the generations of offspring O1 and O2 are F2,

and the sample mean of the whole FBAM population is 10.

Use the number of A alleles to define the genetic score

(additive model). The genetic scores of O1 corresponding

to the first column of Table 2 is (2, 2, 2, 1, 1, 1, 0) and the

genetic scores of O2 corresponding to the third column of

Table 2 (2, 1, 0, 2, 1, 0, 0). The joint O1 and O2 null

distribution according to the last column of Table 2 are (1/

16, 1/8, 1/16, 1/16, 1/8, 5/16, 1/4), with the marginal fre-

quencies of O1 genotypes AA, AB and BB being 1/4, 1/2

and 1/4, respectively (i.e. Prob(O1 | parental lines A and

B)), and the marginal frequencies of O2 genotypes AA,

AB and BB being 1/8, 1/4, 5/8, respectively (i.e.

Prob(O2 | founder parental lines A, B, C). Note that the

frequencies of O1 are the same as the segregating fre-

quencies of a nuclear family because the O1 family itself is

a nuclear family whereas the frequencies of O2 are not the

same as the segregating frequencies of a nuclear family

because the genotype of O2 depends upon the genotype

of O1. The expected genotypic scores of O1 and O2

are E(O1 | A, B) = (1/4)2 ? (1/2)1 ? (1/4)0 = 1.0 and

E(O2|A, B, C) = (1/8)2 ? (1/4)1 ? (5/8)0 = 0.5. The

observed Ui value of this pedigree is (11 - 10) (2 - 1.0)

? (14 - 10) (0 - 0.5) = -1. The observed U is the sum

of the observed Ui for all the nuclear families and pedigrees

segregating at the locus being tested. Note the phenotypic

values of O1 corresponding to each row of Table 2 are the

observed O1 value of 11 and the phenotypic values of O2
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the observed O2 value of 14 according to the FBAT theory.

Similarly, the Ui values of a joint O1 and O2 null distri-

bution corresponding to each row of Table 2 are ((11 -

10)(2.0 - 1.0) ? (14 - 10)(2.0 - 0.5), (11 - 10)(2.0 -

1.0) ? (14 - 10)(1.0 - 0.5), …, (11 - 10)(0 - 1.0) ?

(14 - 10)(0 - 0.5)) = (7, 3, -1, 6, 2, -2, -3). The cor-

responding frequencies of these Ui values are the same as the

joint O1 and O2 null distribution described above. E(Ui) = (1/

16)7 ? (1/8)3 ? ��� ? (1/4)(-3) = 0. E(Ui
2) = (1/16)72 ?

(1/8)32 ?��� ? (1/4)(-3)2 = 10.5. Var(Ui) = 10.5 - 02 =

10.5. Var(U) is the sum of Var(Ui) for all the nuclear families

and pedigrees segregating at the locus being tested.

In a method referred to as pedigree disequilibrium tests

(PDTs) (Martin et al. 2000; Monks and Kaplan 2000),

Var(Ui) is empirically estimated (Lange et al. 2002). The

PDTs have been adapted for plant species and is referred to

as quantitative inbred PDT (QIPDT) (Stich et al. 2006).

In both FBAT and PDT, within family information only

is used for detecting QTLs. Recently, Steen et al. (2005)

developed a two-step procedure in which candidate SNPs

are selected using the among family information and they

are then tested using FBAT.

Quantitative transmission disequilibrium tests (QTDT)

In contrast to the FBAT, QTDT requires specification of a

normal distribution for trait of interest. Abecasis et al. (2000)

developed this method based on Fulker et al. (1999).

Table 1 A null distribution of offspring genotypes in a hypothesized nuclear family of two offspring lines O1 and O2, which are produced by

selfing the F1 progeny from cross between two inbred lines A and B for (t - 1) generations (i.e., Ft generation)

O1 with phenotypic value y1 O2 with phenotypic value y1 Joint O1 and O2 null distribution

Genotype Frequency Genotype Frequency

AA 0.5–0.5t AA 0.5–0.5t (0.5–0.5t)2

AB 0.5t-1 (0.5–0.5t) 0.5t-1

BB 0.5–0.5t (0.5–0.5t)2

AB 0.5t-1 AA 0.5–0.5t 0.5t-1(0.5–0.5t)

AB 0.5t-1 0.52(t-1)

BB 0.5–0.5t 0.5t-1(0.5–0.5t)

BB 0.5–0.5t AA 0.5–0.5t (0.5–0.5t)2

AB 0.5t-1 (0.5t–0.5t)0.5t-1

BB 0.5–0.5t (0.5–0.5t)2

Assume that lines A, B, O1 and O2 have observed genotypes AA BB, BB and AA at the locus being tested, respectively. Let the phenotypic

values of O1 and O2 be y1 and y1, respectively. According to Mendel Law, offspring segregates at AA, AB and Bb with frequencies (proba-

bilities) of 0.5–(0.5)t, (0.5)t-1, 0.5–(0.5)t at tth selfing generation. Prob (1st line = g1, 2nd line = g2) = P(g1) P(g2), where g1, g2 = AA, AB,

BB

Table 2 A null distribution of offspring genotypes in a hypothesized

pedigree, where one inbred line O1 is produced by selfing the F1

progeny from cross between inbred lines A and B for (t1 - 1)

generations (i.e., Ft1 generation) and another offspring O2 from cross

between O1 and inbred line C for (t2 - 1) generations (i.e., Ft2

generation)

O1 with phenotypic value y1 O2 with phenotypic value y2 Joint O1 and O2 null distribution

Genotype Frequency Genotype Frequency

AA 0.5–0.5t1 AA 0.5–0.5t2 (0.5–0.5t1)(0.5–0.5t2)

AB 0.5t2-1 0.5t2 (1–0.5t1-1)

BB 0.5–0.5t2 (0.5–0.5t1)(0.5–0.5t2)

AB 0.5t1-1 AA 0.5 (0.5–0.5t2) 0.5t1(0.5–0.5t2)

AB 0.5t2 0.5t1?t2-1

BB 0.5 ? 0.5 (0.5–0.5t2) 0.5t1(1.5–0.5t2)

BB 0.5–0.5t1 BB 1 0.5–0.5t1

Assume that lines A, B, C, O1 and O2 have the observed genotypes AA, BB, BB, AA and BB at the locus being tested, respectively. And Let the

phenotypic values of O1 and O2 be y1 and y2, respectively. The hypothesized pedigree can be broken into two nuclear families. One consists of

parental lines A and B and offspring O1. The other has parental lines O1 and C and offspring O2. In the former family, O1 segregates at AA, AB

and BB (Table 1). In the latter family, the null distribution of O2 depends upon genotype of O1, which is crossed with parental line C (with

genotype BB). Given O1 with AA, O2 segregates as in Table 1. Given O1 with AB, O2 segregates as would selfing a backcross for t2 - 1

generations. Given O1 with BB, O2 does not segregate
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The most distinct feature of this method is that the

genotypic score gij of an offspring individual j in family i at

the marker locus being tested is decomposed into between

and within family components bi and wij. bi is the expected

genotypic score of an offspring individual given parental

genotypes. wij is a deviation of observed genotypic score

from bi. The relationship between phenotype yij and marker

being tested is described by:

yij ¼ lþ bbbi þ bwwij

where yij is the phenotypic value of an offspring individual

j in family i. l is the grand mean. If family strata exist, bb is

a biased estimator whereas bw provides an unbiased esti-

mate of genetic effects. If family strata do not exist, both

are unbiased estimators of genetic effects (Fulker et al.

1999; Abecasis et al. 2000).

The variance–covariance matrix is defined for each

family as:

Xijk ¼ r2
a þ r2

s þ r2
e if individuals j ¼ k in family i

¼ pijkr
2
a þ r2

s if individuals j 6¼ k in family i

Equivalently, the above model can be re-written for crop

species as:

yij ¼ lþ bbbi þ bwwij þ li þ uij þ eij

where yij, bi, and wij as well as l, bb, and bw are described

as above. li is family mean effect excluding locus being

tested. Let s be {li}, vector of family mean effects.

s * N(0, rs
2 I), where rs

2 is family mean effect variance, 0

is zero vector and I is identity matrix. uij represents poly-

genic effects (background genetic effects excluding locus

being tested) of an offspring individual i in family j. Let u be

{uij}, vector of polygenic effects. u * N(0, ra
2 A), where ra

2 is

the additive genetic variance and A is additive relationship

matrix. eij is residual effect. Let r be {eij}, vector of residual

effects. r * N(0, re
2I), where re

2 is error variance.

A = {pijk}, where pijk is the coefficient of co-ancestry,

which is defined as the probability that a randomly drawn

gene from individual j is IBD with a randomly drawn gene

from individual k at one locus. Bernardo (2010) provides

typical values for various relationships in crop species.

Specifically, pijk = 1/2 for full sibs if parental lines are full

inbred and unrelated and 1/4 for half sibs if the common

parental line is fully inbred and all the parental lines (the

common parental line and other parental lines) are unre-

lated. Note that the off-diagonal components of A multi-

plied by ra
2 model the resemblance (covariance) of

individuals due to IBD of segregating QTLs not due to a

common environment and non-segregating QTLs within

families.

Calculation of A requires a reference population which

usually is the base of an observed pedigree (Lynch and

Walsh 1998). For example, the reference could be

considered as the parental generation of a FBAM popula-

tion. Sometimes, crosses of an FBAM population may be

connected by some common parental lines, e.g., the NAM

mating design and NCD-1. Two options are available to

calculate A. One is that the coefficient of co-ancestry of

offspring individuals from two different crosses is also

calculated. Another is to calculate the coefficient of off-

spring individuals within crosses only and ignore their

relationships across crosses with common parental lines,

i.e., the coefficients of co-ancestry are assumed to be zero

for pairs of offspring individuals from different crosses.

Invoking the latter option is reasonable because IBD of

individuals from different crosses can be estimated via

family mean effects li.

We propose a modified model:

yij ¼ lþ bgij þ li þ uij þ eij

where b is regression coefficient (the genetic effect of

marker being tested) and the others are described as above.

Compared with the former model, this li contains bbbi.

Inclusion of such family effects as random variables pro-

vides a flexible way to correct for family mean effects and

may increase the power of QTL detection especially in case

of a large number of families with small numbers of

progeny per family (Valdar et al. 2009). However, family

mean effects li could be modeled as fixed for fast com-

putation in case of large numbers of progeny per family. In

this way, only the within family information are used to

detect QTLs.

Very often, multi-location phenotyping is conducted in

crop species. For this purpose, we propose:

y‘ij ¼ lþ b‘gij þ E‘ þ l‘i þ u‘ij þ e‘ij

where l and gij are described as above. b‘ is the genetic

effect of the locus being tested at location ‘ and is modeled

as a fixed effect. E‘ is location effect, ‘ = 1, …, L, and is

also modeled as a fixed effect. u‘ij is a parameter repre-

senting polygenic effects of individual i of family j at

location ‘, including main background genetic effects and

the background genetic effects by environment interaction.

Let u = {u‘ij} represent a vector of background genetic

effects, and u * N (0, G). G =
P

g � A, where
P

g is

covariance matrix of background genetic effects across

locations, A is described as above, � represents direct

product operation.
P

g can be modeled by factor analytic

model (Burgueno et al. 2012; So and Edwards 2011) or as a

compound symmetry covariance matrix (So and Edwards

2011). Let s = {l‘i} represent a vector of family effects,

l‘i at location ‘, and s * N (0, S). S =
P

s � I. Similarly,P
s can be modeled by factor analytic model or as a

compound symmetry covariance matrix. Another option is

that l‘i can be modeled as a fixed effect for fast compu-

tation especially when large family sizes are used. Let
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r = {e‘ij} be a vector of residual effects, and r = N (0, R).

R = daig (re‘
2 , ‘ = 1, …, L) � I or re

2I.

The above models are typical mixed linear models and

are easily specified and implemented in commercial soft-

ware, such as Proc Mixed of SAS (SAS Institute 2004) and

ASReml (VSN international 2010).

NAM stepwise regression

This method (Yu et al. 2008) was first applied to a large

scale FBAM population. The relationship between pheno-

typic values and markers is modeled as:

yij ¼ lþ li þ
X

m

bmxijm þ eij

where yij is the phenotypic value of individual j in family i,

l is the grand mean, li is the family mean effect for family

i, xijm is the genetic score of individual j in family i at

marker locus m, bm is regression coefficient of marker

locus m and eij is residual. Note that the family mean effect

is modeled as fixed and the within family information only

is used for detecting QTLs. A standard stepwise selection

algorithm is used to identify the markers included in the

model to represent QTLs. Yu et al. (2008) indicated that

there was no difference between models with and without

parameters representing family effect li. We speculate that

their result was due to the fact that the number of progeny

(200) per family is much larger than the number of families

(25) in the population.

Modified stepwise regression

Guo et al. 2010 used the following model:

yij ¼ lþ li þ bxij þ
X

ci

dcizcij þ eij

where yij is the observed trait value of segregating line j in

family i, and li is the mean effect of family i. xij is the

imputed genetic score of segregating line j in family i at a

marker locus being tested. zcij is the genetic score of

segregating line j for cofactor marker ci linked to a QTL in

family i. dci is regression coefficient of cofactor marker ci

in family i. Originally, the above model was developed for

data in which a targeted genomic region is genotyped with

high density markers but sparse genotyping is conducted on

non-targeted regions. As noted, however, genome-wide

dense genotyping data could be available for a FBAM

population. Therefore, we propose a modified model:

yij ¼ lþ li þ bxij þ
X

c

dczc þ eij

where zc is the genetic score of cofactor marker c associ-

ated with a QTL and dc is a regression coefficient. In

contrast to the former model, cofactor markers are created

which are applied to the whole FBAM population not a

specific family.

Cofactor markers linked to QTLs are first identified with

an initial scan of the genome. Originally, cofactor markers

are separately identified for individual families using

composite interval mapping. When genome-wide dense

genotyping data is available, cofactor markers can be

identified in a whole FBAM population instead of indi-

vidual families using the stepwise regression. Identification

of cofactor markers can be separately conducted for inde-

pendent linkage groups, because markers on independent

linkage groups are reasonably assumed to be independent

in a FBAM population.

After cofactor markers have been identified, all marker

loci on a linkage group are tested for significant associa-

tions with a trait conditional on cofactor markers of other

linkage groups. The marker with maximum test statistic or

the minimal p value for the specific linkage group is

declared to be a functional marker (FM) if its test statistic

or p value exceeds a pre-determined threshold value. If a

FM is identified, additional FMs are searched using a

modified stepwise regression procedure. The algorithm

consists of an adding step and an updating step. In the

adding step, all marker loci are tested conditional on the

already detected FM(s) plus the cofactor markers of the

other linkage groups. In the updating step, previously

identified FMs are re-evaluated as each FM is sequentially

excluded while all other FMs and the cofactor markers of

other linkage groups are included in the model as covari-

ate(s). This updating step is repeated for each of the pre-

viously identified FMs. The adding and updating steps are

repeated until no further significant associations are iden-

tified. FMs are separately searched by linkage groups. The

modified procedure is superior over forward selection when

multiple FMs exist in a genomic region or a linkage group

(Guo et al. 2010).

Forward regression with bootstrap sampling

The model was described by Valdar et al. (2009), with

some notational translation for consistency with the models

described herein, as:

yi ¼ lþ
X

m

bmxim þ ei

where yi is the phenotypic value of individual i and xim is

the genetic score of individual i at marker locus m. In the

original model, a set of known covariates such as envi-

ronmental covariates are included and xim could be a

haplotype locus instead of a single marker locus. A forward

selection algorithm is applied to resampled data sets pro-

duced by non-parametric bootstrapping and subsampling.
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They used model-average statistics to calculate the prob-

ability of loci being included in the model selection. It is

expected that this method can provide robust QTLs. Tian

et al. (2011) and Kump et al. (2011) applied this method to

the maize NAM population.

Haplotype interval mapping

This method was developed for testing haplotypes con-

sisting of several markers instead of a single marker locus

(Jansen et al. 2003).

The basic statistical model is described as:

yij ¼ li þ bh1x1ij þ bh2x2ij þ eij

where li is family mean effect, x1ij and x2ij are separately

haplotypes h1 and h2 which an offspring individual j car-

ries in family i, bh1 and bh2 are the effects of haplotype h1

and h2, respectively. The ancestral genome blocks in the

parents of the crosses are identified via haplotype analysis

of parental lines and haplotypes at one block are then

defined as alternative alleles and their effects are parame-

terized. Another optional model was also developed in

which cofactor markers are added to control background

QTLs (Jansen et al. 2003). Note that different blocks of loci

may have different numbers of haplotypes and therefore

different loci may have test statistics with different num-

bers of degrees of freedoms. A solution is to use p values,

which can be transformed from test statistics.

Rare alleles and next generation sequencing

technologies

In humans, it is recognized that less frequent or rare alleles,

with large effects, are likely more important than postu-

lated by the well-known common disease-common variant

models of complex traits (Cirulli and Goldstein 2010).

Although many geneticists believe that the causal variants

underlying complex traits in humans may have regulatory

roles due to their small effects, another line of evidence

indicates that association signals credited to common

variants could be created by multiple rare variants in the

same genomic region, also referred to as synthetic associ-

ations (Dickson et al. 2010), or may represent a less fre-

quent allele with larger genetic effects (International

HapMap Consortium 2003). Several rare alleles have been

identified in common human diseases (Stanklewicz and

Lupski 2010; Rival et al. 2011; Kiezun et al. 2012) and in

plant species (Yan et al. 2010). These less frequent or rare

alleles could be functional variants, such as non-synony-

mous, nonsense or splice variants. In fact, rare alleles of

large effects may play roles in agronomic traits in crop

species. For example, several major effect genes have been

identified for plant height in wheat and of them, Rht1 and

Rht2 were successfully used in breeding to bring a ‘‘green

revolution’’ (Gale and Youssefian 1985).

Next generation sequencing technologies (Metzker

2010) provide a powerful tool for genotyping all potential

genomic variants. FBAM can be used as a cost-effective

way to apply these technologies in crop species. The

strategy is to sequence all the parental lines involved in a

FBAM population and then impute scores onto the segre-

gating progeny. However, sequencing all the parental lines

may still be expensive especially when a large number of

parental lines are involved. Few studies are available in

application of next generation sequencing technologies in

plant species (Huang et al. 2010; Lam et al. 2010). If

sequence data is available, a potential strategy is to use

existing data. For example, Huang et al. (2010) sequenced

517 diverse rice landraces and identified *3.6 million

SNPs using next generation sequencing technologies. They

also performed association mapping analysis for 14 agro-

nomic traits. However, this association panel may still have

limited power to detect rare alleles. Therefore, lines of

contrasting phenotypes could be selected for generation of

a FBAM population. The population and their parental

lines could be genotyped using a sparse density of markers,

such as 1 marker every 5 cM, and then 3.6 million SNPs of

genotypes can be imputed onto the segregating progeny of

the FBAM population.

An alternative strategy is to deep-sequence regions with

known associations between segregating genotypes and

phenotypes. Rival et al. (2011) sequenced 56 genes from

the regions associated with Crohn’s disease in 350 cases

and 350 controls and then identified a dozen novel alleles

from identified 70 rare and low frequency allelic variants in

a larger size population consisting of 9 independent case–

control panels. An analogous FBAM approach in crop

species is to deep-sequence regions known to have QTLs

from prior studies in parental lines and then detect allelic

variants in a FBAM population. A FBAM population is

directly genotyped or imputed onto for the identified

variants. Associated regions could come from: (1) previ-

ously reported QTL regions. A large number of QTLs have

been identified in various traits in crop species. (2) QTL

regions detected using the current FBAM population

through multiple family QTL mapping analysis (Xu 1998;

Li et al. 2005; Guo et al. 2006) when FBAM are genotyped

using a sparse density of markers, (3) QTL regions detected

using the above FBAM data analysis methods when the

involved parental lines or the current FBAM population are

genotyped using a high density of molecular markers.

A final strategy to consider consists of sequencing

selected diverse parental lines representing extreme phe-

notypes. Cirulli and Goldstein (2010) developed an

extreme trait sequencing strategy for human association
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mapping. It includes whole genome-sequencing of a small

number of individuals with extreme phenotypes and

genotyping a larger sample using the identified variants. An

analogous version for FBAM in plant species is that a small

number of lines with extreme phenotypes are sequenced

and associations are detected in a FBAM population which

is genotyped or imputed onto for the identified variants.

In summary, FBAM will provide a powerful and cost-

effective way to identify the causal variants underlying

complex traits especially through application of next

generation sequencing technologies. A variety of meth-

ods can be used for different situations. However, a

FBAM population may be divided into groups and

evaluated for phenotypes in multiple locations due to

adaptation of plant species or evaluation of a FABM

population may be needed for more information at mul-

tiple locations or years. The methods discussed above

assume that a FBAM population is evaluated for pheno-

type data in a relatively uniform environment although

we propose a linear mixed model approach for multi-

environmental phenotyping through extending human

QTDT. Epistasis may be important for crop species and a

FBAM population may be a powerful source due to its

involvement of diverse parental lines. But no available

methods handle this issue.

Acknowledgments The authors thank Drs. Gilles Gay and Robert

Bensen, Syngenta biotechnology, Inc, for critical reading of the

manuscript.

Appendix: Conditional probabilities of QTL genotypes

given flanking markers in DHF2 populations

In maize, DHF2 can be produced through inducing haploids

from F2 plants using inducer lines and doubling them using

chemical colchicine (Chase 1951; Bordes et al. 1997;

Bernardo 2009). Consider three linked loci A, Q and B,

which are fixed with AAQQBB and aaqqbb for two

parental lines, respectively. r1 is recombination rate

between A and Q loci, r2 between Q and B loci and

r between A and B loci. Due to the high density of markers

we assume that probability of double-cross over events per

meiosis is zero. Therefore, r = r1 ? r2.

Production of DHF2 involves three processes. Firstly, F1

plants (AQB//aqb) produce a total of six gametes: (1) No

recombination event. AQB and aqb, with a frequency of

(1 - r)/2, respectively. (2) A single recombination event

between A and Q. aQB and Aqb, with a frequency of r1/2,

respectively. (3) A single recombination between Q and B.

AQb and aqB, with a frequency of r2/2, respectively.

Secondly, female and male gametes are randomly mated to

produce a total of 21 F2 phased genotypes: (1) No

recombination event. AQB//AQB, aqb//aqb and AQB//aqb.

(2) A recombination event in one gamete between A and Q.

aQB//AQB, aQB//aqb, Aqb//AQB and Aqb//aqb. (3) A

recombination event in one gamete between Q and B.

AQb//AQB, AQb//aqb, aqB//AQB and aqB//aqb. (4)

Recombination events in both gametes between A and Q.

aQB//aQB, Aqb//Aqb and aQB//Aqb. (5) Recombination

events in both gametes between Q and B. AQb//AQb, aqB//

aqB, AQb//aqB. (6) Recombination events in both gametes,

one occurs between A and Q, but the other occurs between

Q and B. AQb//aQB, aqB//aQB, AQb//Aqb and aqB//Aqb.

The frequency of one phased genotype is two times the

product of two F1 gamete frequencies if the two gametes

have different genotypes and the product of two F1 gamete

frequencies if the two gametes have the same genotype.

For example, AQB//AQB is (1 - r)2/4 and aQB//AQB is

r1(1 - r)/2. F2 plants produce haploids which are equiva-

lent to gametes. For each phased F2 genotype, the fre-

quencies of gametes are produced as with F1 described

above and then be multiplied by its F2 genotype frequency

to obtain the frequencies of corresponding double haplo-

type frequencies. For example, an F2 genotype of aQB//

Aqb, which has a frequency of (r1)2/2, produces haploids:

aQB with a frequency of (1 - r)/2, Aqb with a frequency

of (1 - r)/2, AQB with a frequency of r1/2, aqb with a

frequency of r1/2, aQb with a frequency of r2/2 and AqB

with a frequency of r2/2. The frequencies of haploids aQB,

Aqb, AQB, aqb, aQb and Aqb are r1
2(1 - r)/4, r1

2(1 - r)/4,

r1
3/4, r1

3/4, r2
3/4, and r2

3/4, respectively. A total of eight

double haploid genotypes are produced from F2 plants:

AAQQBB, aaqqbb, AAqqBB, aaQQbb, aaQQBB,

AAqqbb, aaqqBB and AAQQbb. Their frequencies are as

follows:

PðAAQQBBÞ ¼ PðaaqqbbÞ ¼ p1ð2� rÞ þ p2ð1� r2=2Þ
þ p3ð1� r1=2Þ þ p4r1 þ p5r2 þ 0:5p6r

PðAAqqBBÞ ¼ PðaaQQbbÞ ¼ 0:5p2r2 þ 0:5p3r1

þ p4r2 þ p5r1 þ 0:5p6r

PðaaQQBBÞ ¼ PðAAqqbbÞ ¼ p1r1 þ p2ð1� r2=2Þ
þ 0:5p3r1 þ p4ð2� rÞ þ p6ð1� r=2Þ

PðaaqqBBÞ ¼ PðAAQQbbÞ ¼ p1r2 þ 0:5p2r2

þ p3ð1� r1=2Þ þ p5ð2� rÞ þ p6ð1� r=2Þ
where p1 ¼ ð1� rÞ2=4; p2 ¼ r1ð1� rÞ=2; p3

¼ r2ð1� rÞ=2; p4 ¼ r2
1=4; p5 ¼ r2

2=4 and p6 ¼ r1r2=2:

On the ends of chromosomes a single marker could be

used to impute the QTL genotypes. Assume that Q locus is

linked with marker locus with recombination rate of r

between them. The frequencies of genotypes in DHF2 are:
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PðAAQQÞ ¼ PðaaqqÞ ¼ p1ð2� rÞ þ p2 þ p3r

PðAAqqÞ ¼ PðaaQQÞ ¼ p1r þ p2 þ p3ð2� rÞ
where p1 ¼ ð1� rÞ2=4; p2 ¼ rð1� rÞ=2 and p3 ¼ r2=4
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